Генетический алгоритм - Большая Энциклопедия Нефти и Газа, статья, страница 1
От жизни лучше получать не "радости скупые телеграммы", а щедрости большие переводы. Законы Мерфи (еще...)

Генетический алгоритм

Cтраница 1


Генетический алгоритм реализован в популярных версиях ней-ропакетов - широко известном в России Brain Maker Professional v.3.11 и менее известном, но более профессиональном Neurofo-rester v.5.1. В этих пакетах генетический алгоритм управляет процессом общения на некотором множестве примеров, а также стабильно распознает ( прогнозирует) новые ситуации с высокой степенью точности даже в условиях внешних помех, например, появления противоречивых или неполных знаний. Причем обучение сводится к работе алгоритма подбора весовых коэффициентов, который реализуется автоматически без непосредственного участия пользователя-аналитика.  [1]

Генетический алгоритм ( репродуктивный план Холланда) - раздел эволюционного моделирования, заимствующий методические приемы из теоретических положений популяционной генетики. Представляет собой своего рода модель машинного исследования поискового пространства, построенную на эволюционной метафоре.  [2]

Генетические алгоритмы используют соответствующую терминологию, конфигурации системы называют хромосомами, над которой можно производить операции кроссинговера и мутации. Хромосома является основной информационной единицей, кодирующей переменную, относительно которой ищется оптимум. Каждая компонента хромосомы называется геном. Выбор удачного представления для хромосомы, или же кодировка искомого решения, могут значительно облегчить нахождение решения.  [3]

Генетические алгоритмы имитируют эволюционный процесс приближения к оптимальному результату, начиная с некоторого исходного поколения структур, представленных экземплярами хромосом. Этот процесс в базовом генетическом алгоритме является вложенным циклическим вычислительным процессом. Внешний цикл имитирует смену поколений. Во внутреннем цикле формируются члены очередного поколения.  [4]

Генетические алгоритмы, являясь одной из парадигм эволюционных вычислений, представляют собой алгоритмы поиска, построенные на принципах, сходных с принципами естественного отбора и генетики. Если говорить обобщенно, они объединяют в себе принцип выживания наиболее перспективных особей - решений и структуризированный обмен информацией, в котором присутствует элемент случайности, который моделирует природные процессы наследования и мутации. Дополнительным свойством этих алгоритмов является невмешательство человека в развивающийся процесс поиска. Человек может влиять на него лишь опосредованно, задавая определенные параметры.  [5]

Генетические алгоритмы работают с кодами, в которых представлен набор параметров, напрямую зависящих от аргументов целевой функции. Причем интерпретация этих кодов происходит только перед началом работы алгоритма и после завершения его работы для получения результата. В процессе работы манипуляции с кодами происходят совершенно независимо от их интерпретации, код рассматривается просто как битовая строка.  [6]

Генетические алгоритмы в процессе работы не используют никакой дополнительной информации, что повышает скорость работы. Единственной используемой информацией может быть область допустимых значений параметров и целевой функции в произвольной точке.  [7]

Генетический алгоритм использует как вероятностные правила для порождения новых точек анализа, так и детерминированные правила для перехода от одних точек к другим. Выше уже говорилось, что одновременное использование элементов случайности и детерминированности дает значительно больший эффект, чем раздельное.  [8]

9 Кроссовер и рекомбинация. [9]

Генетические алгоритмы выражают эволюцию популяции в направлении от полезности начального поколения к окрестностям экстремума. Обоснование этого положения содержится в основной теореме генетического подхода - теореме шаблонов. В этой теореме вводится понятие схемы ( шаблона), которая определяется как совокупность фиксированных значений генов в определенных локусах.  [10]

Генетические алгоритмы входят в инструментарий DM & KDD как мощное средство решения комбинаторных и оптимизационных задач. В задачах извлечения знаний применение генетических алгоритмов сопряжено со сложностью оценки статистической значимости полученных решений и с трудностями построения критериев отбора удачных решений. Представителем пакетов из этой категории является GeneHunter фирмы Ward Systems Group.  [11]

Генетические алгоритмы используют в теории нечетких систем для настройки параметров функций принадлежности. Интеграция четких и нечетких нейронных сетей и генетических алгоритмов обеспечивает реализацию оптимизационной задачи.  [12]

Генетический алгоритм предназначен для случаев, когда подобное знание недоступно.  [13]

14 Схема генетического поиска с миграцией особей. [14]

Генетические алгоритмы, в которых используется одна популяция особей для поиска решения, не всегда оказываются эффективными. Основной их недостаток - попадание в локальный оптимум. В § 4.2 уже была представлена модифицированная схема миграции с искусственной селекцией ( рис. 4.8), основанная на механизмах макроэволюции.  [15]



Страницы:      1    2    3    4