Гидрид - церие - Большая Энциклопедия Нефти и Газа, статья, страница 4
Если вы поможете другу в беде, он непременно вспомнит о вас, когда опять попадет в беду. Законы Мерфи (еще...)

Гидрид - церие

Cтраница 4


Типичные гидриды 4 / - элементов пирофорны, по внешнему виду металло - или графитоподобны. Электрическое сопротивление дигидридов, формулы которых можно представить в виде М3 ( Н -) 2 ( е), ниже, чем чистых металлов, но оно увеличивается по мере дальнейшего поглощения водорода. Например, при 80 К наблюдается 106-кратное увеличение сопротивления при превращении LaHi Ss в LaH2 92, а для гидридов церия - 104-кратное.  [46]

В вопросе выявления природы химической связи в гидридах переходных металлов решающее значение имеет анализ свойств водородных соединений элементов, находящихся в непосредственной близости с металлами, образующими со-леобразные гидриды. Особенный интерес приобретает изучение гидридов редкоземельных металлов и гидридов церия, в частности характеризующихся высокой абсорбцией водорода; они наиболее обстоятельно изучены к настоящему времени. О некоторой близости гидридов редкоземельных металлов к солеобразным гидридам свидетельствует уже их активная реакция с водой и характер изменения плотности: образование гидридов церия и лантана в противоположность ионным гидридам в общем сопровождается значительным уменьшением плотности ( табл. 13), но при переходе от дигидридов к тригидридам наблюдается небольшое повышение плотности. Гидриды европия и иттербия вообще образуются с увеличением плотности. Кроме того, Диалером [178] показано, например для церия, что уменьшение плотности этого металла при гидрировании, по сравнению с щелочными и щелочноземельными металлами, является скорее всего следствием малого изменения объема атома при ионизации.  [47]

Цериевые металлы и церий в том числе способны активно поглощать водорол. Гидрид церия был впервые получен нагреванием окиси его с магнием в атмосфере водорода. Состав водородистого соединения иерия был найден отвечающим формуле СеНз 1, а теплота образования определена ранной 56 750 ккал / г-атом. При нагревании в вакууме гидрид церия разлагается на металл и водород.  [48]

Уже в 1931 г. Фогт [170], анализируя изменения магнитной восприимчивости в системе Pd - Н в зависимости от состава ( см. рис. 5.10) пришел к выводу, что атомы водорода отдают атомам палладия свои валентные электроны. Возникающие таким образом протоны проникают в электронную оболочку атомов палладия ( подобно тому, как это имеет место в случае галоидоводородов), образуя ионы PdH, которые могут относительно легко отщеплять протоны. Этот факт, по мнению Фогта, объясняет наблюдаемую ранее [35] миграцию водорода в направлении катода во время электролиза насыщенных водородом палладиевых стержней. Они показали, что при расширении кристаллической решетки металла, за счет растворения им водорода, должно действовать своеобразное внутреннее давление, достаточно большое для того, чтобы быть причиной металлизации водорода. Для объяснения физических свойств гидридов переходных металлов многие исследователи и до сих пор используют эту модель образования гидридов за счет растворения водорода в металле. Одним из главных аргументов в пользу этой модели является расширение ( дилатация) кристаллической решетки переходного металла по мере растворения в нем водорода. Давно известно, что плотность гидридов щелочных и щелочноземельных металлов, в которых водород находится в виде аниона Н -, больше плотности исходных металлов [6, 138] и, следовательно, расстояния между атомами металла в этих гидридах меньше. Этот критерий выяснения типа химической связи в гидриде по его плотности, подробно был рассмотрен только в 1948 г., когда Диалер [39] показал, что образование ионного гидрида может сопровождаться как уменьшением, так и увеличением постоянной решетки. Например, в случае гидрида церия, потребность в пространстве у иона Н - больше, чем увеличение объема за счет ионизации атомов церия, и, следовательно, образование гидрида церия СеН2 солеобразного типа должно сопровождаться увеличением решетки. То же самое наблюдается и для гидридов других переходных металлов.  [49]

Уже в 1931 г. Фогт [170], анализируя изменения магнитной восприимчивости в системе Pd - Н в зависимости от состава ( см. рис. 5.10) пришел к выводу, что атомы водорода отдают атомам палладия свои валентные электроны. Возникающие таким образом протоны проникают в электронную оболочку атомов палладия ( подобно тому, как это имеет место в случае галоидоводородов), образуя ионы PdH, которые могут относительно легко отщеплять протоны. Этот факт, по мнению Фогта, объясняет наблюдаемую ранее [35] миграцию водорода в направлении катода во время электролиза насыщенных водородом палладиевых стержней. Они показали, что при расширении кристаллической решетки металла, за счет растворения им водорода, должно действовать своеобразное внутреннее давление, достаточно большое для того, чтобы быть причиной металлизации водорода. Для объяснения физических свойств гидридов переходных металлов многие исследователи и до сих пор используют эту модель образования гидридов за счет растворения водорода в металле. Одним из главных аргументов в пользу этой модели является расширение ( дилатация) кристаллической решетки переходного металла по мере растворения в нем водорода. Давно известно, что плотность гидридов щелочных и щелочноземельных металлов, в которых водород находится в виде аниона Н -, больше плотности исходных металлов [6, 138] и, следовательно, расстояния между атомами металла в этих гидридах меньше. Этот критерий выяснения типа химической связи в гидриде по его плотности, подробно был рассмотрен только в 1948 г., когда Диалер [39] показал, что образование ионного гидрида может сопровождаться как уменьшением, так и увеличением постоянной решетки. Например, в случае гидрида церия, потребность в пространстве у иона Н - больше, чем увеличение объема за счет ионизации атомов церия, и, следовательно, образование гидрида церия СеН2 солеобразного типа должно сопровождаться увеличением решетки. То же самое наблюдается и для гидридов других переходных металлов.  [50]



Страницы:      1    2    3    4